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ABSTRACT

This is a semiannual progress report for the Antenna Pattern Control Using

Impedance Surfaces research grant. This report covers the research period from

September 16, 1991 to March 15, 1992.

During this research period, some modifications of the moment method code were

made. Analyses of horn antennas have been conducted extensively. Excellent agree-

ments with measured results have been observed for pyramidal horn antennas with

perfectly conducting surfaces. The predicted results are so accurate that even the

finest ripple structures in the far-field radiation patterns are computed correctly.

Preliminary results for the radiating patterns of pyramidal horns with impedance

surfaces were also obtained. Discussions of using the code in accurate modeling of

practical pyramidal horn antennas are also included. After the code for the analysis

of the horn antennas with impedance materials is finalized, the synthesis problem will

be examined in the coming research period.
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I. INTRODUCTION

Modification of the Code

In previous reporting periods, we presented the stepped-waveguide and hybrid

field integral equation method for the analysis of horn antenna. To make the code

more adaptable to the analysis of pyramidal horn antennas with impedance walls,

TM_ and TE_ (instead of TM_ and TE_) modes are chosen to represent the fields in

the stepped-waveguide section. The transition equations relating full-wave coefficients

on both sides of the stepped junction are given by (see also page 6 of our September

16,1990-March 15, 1991 report)
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This choice of eigen expansion gives more weights to the few dominant TM u

modes to represent the field distributions. Therefore, the numerical process of com-

bining scattering matrices is more robust. Unfortunately, this representation also has
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its setback. The problem is that the factor w_pe -/3y _ appears in both the numera-

tor and denominator in the transition equations. In a rare occasion, this factor can

approach to zero, causing numerical difficulties. The 7-inch square horns presented

in our March 16,1991-September 15, 1991 report happens to encounter such an oc-

casion on the radiation aperture for some of the modes. The error caused by this

was partially responsible for the excessive differences between the measured and the

predicted results presented in the report. We discovered this problem in the problem

in the early stage of this reporting period, and the alternative TM_ and TE_ modes

were chosen to replace TM_ and TE_ modes. An outline of the differences in the

transition equations in the two sets of eigen mode expansions are presented here.

When TMz and TE, modes are chosen to represented the electromagnetic fields

in the waveguide sections, the two z component vector potentials (Az and F_) can

expressed as

F, = e Z (A""_e-i_" + B'_'_eJZ'z)c"n'_(x'Y) (5)
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Then the transverse electric and magnetic fields due to the two vector potentials

can be found by the following equations[I]:

10Fz 1 02Az
E_ - j (10)
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On the stepped-waveguide junction, the boundary conditions relating the two

waveguides are

E(a),_,_(x,y)Io,_A = E(2)tx Y)[onA (14)

E(_)(x• ,Y)Io.AA = 0 (15)

HO)tx Y)[o,_A H (_) x, _

where A is the area of the smaller waveguide section, and AA is the ring area

of the larger waveguide section extracting A. The boundary conditions in (14)-(16)

uniquely define the relation between the full-wave expansion coefficients on both sides

of the junction. The resulting transition equations for TMz and TE, are given by
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The integrals in U,-,,,_kt and Um,,_t can be performed analytically and reduced to
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In the transition equations (17)-(20), the only possible factor to have singular

value is /3.. This singular value occurs less frequently and is having a weaker sin-

gularity because of the square root operation in (7). This singularity can be easih

avoided in the middle of the transition by varying the stepped size by a small value.



On the radiation aperture, it can be numerically treated with better accuracy than

in TM_ and TEv case because of the weaker singularity. Therefore, the transition

computed by this formulations is much more stable in accuracy for any configuration

of horn transitions.

B. Higher Order Modes

One of the reason for the inaccuracy of the predicted patterns (Figures 7 to 10)

presented in the previous reporting period is because there werre not enough higher

order modes included in the computation of the horn transition and in the aperture

discontinuity. We realized this problem in this research period, and the following were

measures taken to determine the number of higher order modes.

Pyramidal horns are generally excited by the dominant TE1o mode from the

feeding waveguide, and higher order of TE,,,_ and Tll, lmn modes are generated in

the transition. For the pyramidal horn with symmetrical flarings on both dimen-

sions, only those modes which have m = 1,3,5, 7, ..., M and n = 0 (for TE modes

only),2, 4, 6, ..., N are generated in the transition. The couplings between TEm,_ and

TMm,_ modes are analytically calculated by (17)-(20). There are two factors which

affect the accuracy of the stepped waveguide modeling of the continuous horn transi-

tion: the size of the stepped discontinuity in modeling the continuous horn transition

with a finite number of cascaded stepped waveguides, and the required highest order

modes (M and N) in (5)-(6). Our experience demonstrates that good accuracy can

be achieved by limiting the maximum size of the stepped discontinuity to A/32. The

horn transition and the radiation aperture both generate higher order modes. There-

fore, M and N should be determined by the flaring of the transition and the aperture

discontinuity. The higher order modes on the aperture contribute more significantly



to the radiation patterns in the back regions. To accurately predict the radiation

pattern in the entire region, many more high order modes should be included for this

analysis than was in [2, 3]. An empirical formula for determining M and N is

(M,N) = 3(A,B)
+ 1.5 (27)

where A and B represent the size of the horn aperture. To compute the transition

more efficiently, only a few modes are needed in the region near the feed and the

number of modes should approach (27) as the computation moves toward the horn

aperture. This process preserves the accuracy, and reduces the computation time to

about one eighth of that which would be required if a constant number of modes

determined by (27) are used throughout. When sufficient higher order modes are

included, theoretical predictions and measurements are in excellent agreement as

presented later in the result section.

C. Thickness of the Aperture Walls

In mid 1960's, Russo, et. M.[4] modeled the effect of the aperture wall thickness

on the E-plane radiation pattern. During the previous periods of this research pro-

gram, efforts were also devoted to predict the rapid ripple structures of the H-plane

radiation patterns in the back regions. During this research period, we accurately

modelled the aperture wall thickness by including a set of roof-top rectangular pat ch

modes around the radiation aperture. This improved model resulted in a much better

agreement between the computed and the measured radiation patterns. Discussions

of the improvements are included in the next section.
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II. RESULTS

Modeling Horns with PEC Walls

More extensive comparisons between the measurements and predictions were con-

ducted for the X-band standard gain horn. Table 1 lists measured and predicted

antenna parameters for the 20-dB standard gain horn at 9, 10, and 11 GHz, respec-

tively.

Table 1: Computed and measured VSWR's and gains of the standard gain horn

9 GHz 10 GHz 11 GHz

VSWR Gain VSWR Gain VSWR Gain

Computed 1.082 19.98dB 1.057 20.63dB 1.031 21.46dB

Measured 1.10 19.72dB 1.06 20.46dB 1.04 21.24dB

Notice that the gains of the standard horn listed in Table 1 have about a constant

0.2 dB differences for all three frequencies. It should be mentioned that the measured

gains were obtained using the same horn as the calibration device. Therefore, if there

is any inaccuracy in the calibration data, all three data sets are affected. However.

the agreement between the computed and measured VSWR's is excellent. Figures

1 to 6 represent the comparisons of the corresponding measured, predicted, and ap-

proximated E- and H-plane patterns for the standard gain horn. The approximated

patterns are computed using the method outlined in Chapter 12 of Antenna Theory

by Balanis[5] except that the free space wave impedance in (12.1d) is replaced by the

guided wave impedance at the aperture. As demonstrated in the figures, patterns

predicted using the moment method code compare much better with the measured

patterns for all frequencies in the X-band. The improvements are more evidenl in the
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back regions.

In the previous reporting period, we experienced some difficulties in accurately

predicting radiation patterns of large square aperture horns. We also had difficulty

in predicting the rapid ripple structures of the H-plane patterns in the back regions.

After sufficient number of higher order modes and the thickness of the aperture walls

are included in the prediction, these difficulties have been circumvented in this report

period. We accurately can model the wall thickness by adding a ring of rectangular

roof-top patches around the radiation aperture. In 1965, Russo et. a]. [4] presented

some insignificant changes due to different walls thickness in the analysis of E-plane

patterns using GTD. Figures 7 to 12 represent our comparisons of the E- and H-plane

patterns of the three horns at 10.0 GHz with and without modeling the aperture

wall thickness. Results in the figures agree with Russo's conclusion for the E-plane

radiation patterns. However, for the H-plane patterns, the predicted pattern of thin

wall model does not agree in the back region with the measured pattern as well as

those of the thick wall model. The thick wall model accurately predict the rapid ripple

structure in the back region while the thin wall model does not. It is our observation

that the rapid ripples of the H-plane pattern are attributed by the wall thickness on

the radiation aperture.

The other interesting result obtained in this reporting period is the solution of the

aperture field distributions. Figures 13 to 15 represent computed aperture field (Eu

and H_ components) distributions of the standard gain horn at 9, 10, and 11 GHz.

Contrary to the classical beliefs that the aperture fields are basically TElo with

parabolic phase fronts, distributions presented here demonstrate much more com-

plicated aperture field distributions. The deviations from the approximated aperture

distributions are more evident for H_. Figures 16 and 17 represent aperture field

15
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distributions of the 5-inch and 7-inch square horns at 10 Gttz. Figures 13 to 17

also demonstrate that as the electrical sizes of the. aperture become larger, ampli-

tude distributions of the aperture field become more complicated; however, phase

distributions approach a parabolic phase front.

B. Modeling Horns with Impedance Walls

Figure 18 represents the comparison of E-plane patterns at 10 GHz for the stan-

dard gain horn coated with 2-cm of Nitrile material on the E-plane walls near the

radiation aperture. This preliminary result has some discrepancies in the sidelobe

regions. We believe it is due to the incompleteness of the full-wave analysis of the

field distribution in the coated section of the horn. As a result of this inaccuracy, the

predicted gain is 0.4 dB lower than the measured gain. In the next reporting period,

we will concentrate our effort on resolving this problem.

III. DISCUSSIONS

The full-wave and integral equation method code were applied to analyze electri-

cally large pyramidal horn antennas with or without lossy material coating on inner

walls of the horn. For the analysis of the pyramidal horn antenna with perfectly

conducting walls, accurate prediction can be achieved by:

• include sufficinet higher order modes in the full-wave analysis. The required

number of modes can be determined using the empirical formula of (27).

• limit the size of the stepped discontinuity to less than ,_/32 in the stepped-

waveguide modeling of the continuous horn transition.
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• limit the largest segment size of the roof-top patch to less than 0.2A to ensure

an effective and accurate solution of the electric field integral equation on the

outer surfaces of the pyramidal horn antenna.

• include the aperture thickness in the segmentation of the outer surface.

When these rules are observed, the moment method code can be used to predict

the pyramidal horn with excellent accuracy. For a horn antenna with lossy impedance

inner wall, the solution for the outside surface is the same as that of the perfectly

conducting case. A full-wave representation of the field configuration in the coated

section of the horn is needed to accurately include the effect of the lossy material

coating.

IV. FUTURE WORK

In the coming reporting period, the research will be focused on accurately

modeling of horn antennas with material coatings on the inner walls. Algorithms on

stabilizing the eigen value of the partially lossy material coated waveguides will be

introduced to ensure the accuracy of the eigen mode representation of the field struc-

ture inside the coated section of the horn. When such a modeling is completed, the

synthesis techniques are going to be implemented and compared with measurements.
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V. PUBLICATIONS

During this reporting period, one paper has been submitted for publication in

the IEEE Transaction on Antennas and Propagations. One paper was submitted

and accepted as one of the finalists for student paper contest in the plenary session

of the I992 IEEE APS/URSI/NEM Joint Symposia. The papers to be published

or presented are all under the sponsorship of the NASA-AVRADA Joint Research

Program Research Program Office research grant No. N AG-l-1183.

1. Kefeng Liu, C. A. Balanis and G. C. Barber, "Analysis of pyramidal horn

antennas using moment methods," submitted for publication in IEEE Trans.

on Antennas and Propogat.

2. Kefeng Liu, and C. A. Balanis, "Integral equation analysis of high-gain pyrami-

dal horn antennas," selected as one of the finalists for presention in 1992 IEEE

APS/URSI/NEM Joint Symposia, for student paper contest.
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